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Derivation of a Numerical Method for solving a single linear parabolic PDE

I.  FORMULATION.

Linear parabolic partial differential equations are, in their most general form, given by:

( )[ ] fTbaTTc
t
T

d +∇⋅−−∇⋅∇=
∂
∂

(I.1)

where the functions, f,d,c,b,a  are known functions of z,y,x,t  and the temperature, T , is an

unknown function of z,y,x,t .  In order to approximate this creature using a finite difference

scheme we  recognize that

( )[ ] TcTccTTccTTcTc 22 ∇⋅∇+∇=∇⋅∇+∇=∇⋅∇+∇⋅∇=∇⋅∇ (I.2)

and rewrite this as:

fTbaTTcTc
t
T

d 2 +∇⋅−−∇⋅∇+∇=
∂
∂

(I.3)

( ) fTbcaTTc
t
T

d 2 +∇⋅−∇+−∇=
∂
∂

(I.4)

For purposes of brevity only, we will consider the case with variation only in one spatial
dimension.  The extension to three dimensions is straightforward.  Our most general parabolic
PDE becomes in one spatial dimension
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We now need to know the functional forms of c,f,d,c,b,a ∇ , which must be given.  In many
problems, most of these functions are constants and, often the constants are unity or zero.
However, in order to write a code that solves any parabolic PDE, it is for this general formulation
that we derive a finite-difference method.
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Our plan is to divide our space dimensions each into m spatial increments, each of width 
m
L

 .  If

we are interested in observing the heat transfer from time ot  to ft , then we can divide that time

into n equal temporal increments, each of width 
n

tt of −
.  See Figure One.

At the first step, you know all of the function values, T , at time= ot , because these are given by

the initial condition.  Let’s first consider the case where we have 2 Dirichlet boundary conditions.
In that case, we also know the values (temperatures, if we assume we are solving the heat
equation) at the beginning and end of the rod for all time.  Then what we next want is the
temperatures for all interior nodes (all nodes but the 2 nodes with temperatures defined by the
boundary conditions at the first time increment, 1t .  If we can get { })x,t(T 1  from { })x,t(T o

and )x,t(T o  and )x,t(T m , then we have a formulation which will allow us to incrementally

solve the P.D.E through time.   Where we could then obtain { })x,t(T 2  from { })x,t(T 1  and

)x,t(T o  and )x,t(T m .  In general we want to obtain { })x,t(T 1j+  from { })x,t(T j  and

)x,t(T o  and )x,t(T m .

We will derive one such method, a method known as the Crank-Nicolson method.

A comment on notation:  we will write )x,t(T ij  as j
iT  so that

j superscripts designate temporal increments
i subscripts designate spatial increments
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Figure One.  Schematic of the spatial and temporal discretization.  Case I.  Two Dirichlet
Boundary Conditions.
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Figure Two.  Schematic of the spatial and temporal discretization.  Case II.  Two Neumann
Boundary Conditions.
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II.  DISCRETIZATION.
Derivation of the Crank-Nicolson finite difference equations

A.  The Parabolic partial differential equation.

The Crank-Nicolson finite difference equations provide estimates that are second order in
space and time.  The Crank-Nicolson is an implicit method.

Let j superscripts designate temporal increments and let i subscripts designate spatial
increments.  For purposes of brevity only, we will consider the case with variation only in one
spatial dimension.  The extension to three dimensions is straightforward.  Our most general
parabolic PDE becomes in one spatial dimension
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(II.1)

In order to get an approximation that is second order in time, we recast this equation as

)T,t,x(Kf
x
T

b
x
c

aT
x

T
c

d
1

t
T

x2

2

=







+

∂
∂







 −

∂
∂

+−
∂
∂

=
∂
∂

(II.2)

Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead
in time, namely

t
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(II.3)

This statement is true at any given point i in space.  It is a can make a forward finite difference
formula of the partial derivative with respect to time.  Now what is also true by the second-order
Runge-Kutta method is that:





 +=



 +≈








∂
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(II.4)

so that:
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∆
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This is the formula for the second order Runge-Kutta.  Ordinarily, we wouldn't know the

temperature needed to evalute 1j
iK +  (and we would be forced to approximate it) but we shall see

that we can formulate the problem in a linear fashion so that we can implicitly solve the right and
left-hand sides of this equation simultaneously, without further approximation.

To continue, we need to evaluate the right hand side of equation (II.4).  For any given
point j in time, we can make a finite approximation of the partial derivative with respect to space
(centered finite difference formula).

x2

TT

xx
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T j
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−+ (II.6)

Moreover, we can use that same formula, again to obtain the second derivative of the temperature
with respect to space. (Forward finite difference formula for first derivative with backward finite
difference formula for second derivative gives centered finite difference formula.)
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We can substitute our formula for the first spatial derivative into that for the second spatial
derivative.
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(II.8)

This gives the second spatial derivative at time j.  We can then obtain the two functions, 1j
iK +  and

j
iK  which we require to obtain the temperatures at the new time.
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Define
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so that we can rewrite equations (II.9) and (II.10) as
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∆
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Group like temperatures in equations (II.9b) and (II.10b)
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Substitute equations (II.9c) and (II.10c) into (II.5) to obtain
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Group like temperatures, placing all unknown temperatures (at time j+1) on the right-hand side
and all known temperatures (at time j) on the left-hand side.
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(II.12)

If we define )AC21(Jdiag ++= , ( )BCJhi +−= , ( )BCJlo −−=  and

)AC21(Rdiag −−=  then we can rewrite equation (II.12) as
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i

j
1i

j
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j
i

j
i,diag

j
1i

j
i,lo
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1i
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i,lo FFTJTRTJTJTJTJ +

+−
+

+
++++

−
+ ++−+−=++

(II.13)

These equations hold for all interior nodes.  We will deal with nodes affected by the
boundary conditions shortly.  When we have Dirichlet boundary conditions, an interior node is
any node except those at the boundary.  When we have Neumann boundary conditions, we are
forced to add an imaginary node on each side of the system.  Thus an interior node is any node
except those two imaginary nodes (but including the nodes that would be the boundary if we had
Dirichlet boundary conditions).

This format is linear in unknowns, 






 +1jT .  We should take careful notice of this

equation.  (1)  All our unknown temperatures (the temperatures at time j+1 are on the left hand
side of the equation).  (2)  Moreover, they appear in a linear fashion on the LHS.  (3)  All the
variables on the RHS are known quantities.  Clearly this is going to give us a system of linear,
algebraic equations.  We solve this system of equations using the rules of linear algebra.  In fact,
we can write the above equation as:

RTJ 1j =+
(II.14)

This is a system of equations of the standard form:

bxA = (II.15)

with a solution

RJT 11j −+ = (II.16)

so long as the determinant of the J matrix is non-zero.  We will call the matrix on the left-hand
side of equation (II.14) the Jacobian and we will call the vector on the right-hand side of equation
(II.14) the residual.

Size of the matrix:
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 If there are m spatial intervals, there are m+1 spatial nodes, numbered by the variable i
from 0 to m.  For 2 Dirichlet boundary conditions, if there are m spatial nodes, then there are m-1
interior nodes, thus there are m-1 unknown temperatures.  The J  matrix is a matrix of dimension

m-1 by m-1, with an index k bounded by  1mk1 −≤≤  corresponding to spatial nodes
1mi1 −≤≤ .

For 2 Neumann boundary conditions, there are m+3 spatial nodes. (This is because for
Neumann boundary conditions, we create imaginary nodes at each end, in order to satisfy the
boundary condition fluxes.  See Figure Two.  The additional nodes take i values of -1 and m+1.)
The temperature at all of these nodes are unknown.  Thus there are m+3 unknown temperatures.
The J  matrix is a matrix of dimension m+3 by m+3, with an index k bounded by  3mk1 +≤≤
corresponding to spatial nodes 1mi1 +≤≤− .

For 1 Dirichlet, and 1 Neumann BC, there are m=m+2 spatial nodes, numbered by the
variable i from 0 to m+1, if the Dirichlet node is at 0, numbered by the variable i from -1 to m, if
the Dirichlet node is at m. The temperature at all but one of these nodes (the Dirichlet node) are
unknown.  Thus there are m+1 unknown temperatures.  The J  matrix is a matrix of dimension

m+1 by m+1, with an index k bounded by  1mk1 +≤≤  corresponding to spatial nodes
1mi0 +≤≤  or mi1 ≤≤− .

The right hands side of the above equation is the residual.  The left hand side is a
tridiagonal matrix.

Below we consider the explicit forms of the Jacobian and residual.

B.  Dirichlet boundary conditions.

We will consider our Dirichlet Boundary conditions in their most general form as

hT = (II.17)

where h  is a known functions of x,t  in one spatial dimension and z,y,x,t  in three dimensions.

In terms of an unknown temperature at a discretized node, we have:

( )1ji
1j

i
1j

i t,xhhT +
++ == (II.18)

This equation will be used at the boundary nodes.  This is in the same linear form as the finite-
difference equations for the P.D.E., which is what we need since, ultimately, we need to solve
them simultaneously.

C.  Neumann boundary conditions.

We will consider our Neumann Boundary conditions in their most general form as

gqT
x
T

p +−=
∂
∂

(II.19)
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where g,q,p  are known functions of x,t  in one spatial dimension and z,y,x,t  in three

dimensions.  We already have a formula for the first spatial derivative, namely
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xx
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so our Neumann boundary condition becomes at time j+1
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We define 







∆
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x2
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1j
i gTqTTP +++

−
+

+
+ +−=





 − (II.21)

We perform the same rearrangement as we did on the PDE, putting all unknown temperatures at
time j+1 on the left-hand side and all other temperatures on the right-hand side.

1j
i

1j
1i

1j
i

j
i

1j
i

1j
1i

1j
i gTPTqTP ++

+
+++

−
+ =++− (II.22)

This equation will be used for the imaginary spatial nodes created to handle Neumann boundary
conditions.   This is in the same linear form as the finite-difference equations for the P.D.E., which
is what we need since, ultimately, we need to solve them simultaneously.

III.  JACOBIANS AND RESIDUALS.
A.  Dirichlet boundary conditions

1.  Calculate Jacobian (k is the index inside the Jacobian matrix)
a.  First exterior node (i=0)

Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

b.  Last exterior node (i=m)
Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

c.  First interior node (i=1) (k=1)
1j

1,diagJ)1,1(J +=
1j
1,hiJ)2,1(J +=
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d.  Last interior node (i=m-1) (k=m-1)
1j

1m,loJ)2m,1m(J +
−=−−

1j
1m,diagJ)1m,1m(J +

−=−−
e.  All other nodes (1<i<m-1) (1<k<m-1)

1j
i,loJ)1k,k(J +=−

1j
i,diagJ)k,k(J +=

1j
i,hiJ)1k,k(J +=+

so that the Jacobian looks like:
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+++
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1mdiag

1j
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ihi
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1j
ihi

1j
idiag

1j
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1j
2hi

1j
2diag

1j
2lo

1j
1hi

1j
1diag

JJ0

JJJ

0JJ

    0          0       0    

    0          0       0    

 J      0       0    

    0    0       J      

    0    0           0        

      0      0           0        

JJ0

JJJ

0JJ

J

This is a tri-diagonal matrix of known functions of time and space.

A.  Dirichlet boundary conditions
2.  Calculate Residual

a.  First exterior node (i=0)
Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

b.  Last exterior node (i=m)
Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

c.  First interior node (i=1) (k=1)
1j

0
1j
1,lo

1j
1

j
1

j
2

j
1,hi

j
1

j
1,diag

j
0

j
1,lo TJFFTJTRTJ)1(R +++ −++−+−=

d.  Last interior node (i=m-1) (k=m-1)
1j

m
1j

1m,hi
1j
1m

j
1m

j
m

j
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j
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j
1m,diag

j
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j
1m,lo TJFFTJTRTJ)1m(R ++

−
+
−−−−−−− −++−+−=−

e.  All other nodes  (1<i<m-1) (1<k<m-1)
1j

i
j

i
j
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j
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j
i

j
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j
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j
i,lo FFTJTRTJ)k(R +

+− ++−+−=
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so that the Residual looks like:
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j
0
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...
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TJFFTJTRTJ

R

This is a vector of known quantities.

B.  Neumann boundary conditions
1.  Calculate Jacobian (k is the index inside the Jacobian matrix)

a.  First exterior node (now an imaginary node) (i=-1) (k=1)
1j

0P)1,1(J +−=
1j

0q)2,1(J +=
1j

0P)3,1(J +=
b.  Last exterior node (now an imaginary node) (i=m+1) (k=m+3)

1j
mP)1m,3m(J +−=++
1j

mq)2m,3m(J +=++
1j

mP)3m,3m(J +=++
c.  All other nodes (-1<i<m+1) (1<k<m+3)

1j
i,loJ)1k,k(J +=−

1j
i,diagJ)k,k(J +=

1j
i,hiJ)1k,k(J +=+

The Jacobian looks like:
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B.  Neumann boundary conditions
2.  Calculate Residual

a.  First exterior node (i=-1) (k=1)
1j

0g)1(R +=
b.  Last interior node (i=m+1) (k=m+3)

1j
mg)3m(R +=+

c.  All other nodes  (-1<i<m+1) (1<k<m+3)
1j

i
j

i
j
1i

j
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so that the Residual looks like:
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This is a vector of known quantities.

IV.  SOLUTION.
With the Jacobian and Residual, we solve for the temperatures at the next time, j+1:

RJT 11j −+ =

We can then repeat the calculation of the Jacobian and the residual and solve for the temperatures
at time, j+2, and so on.


